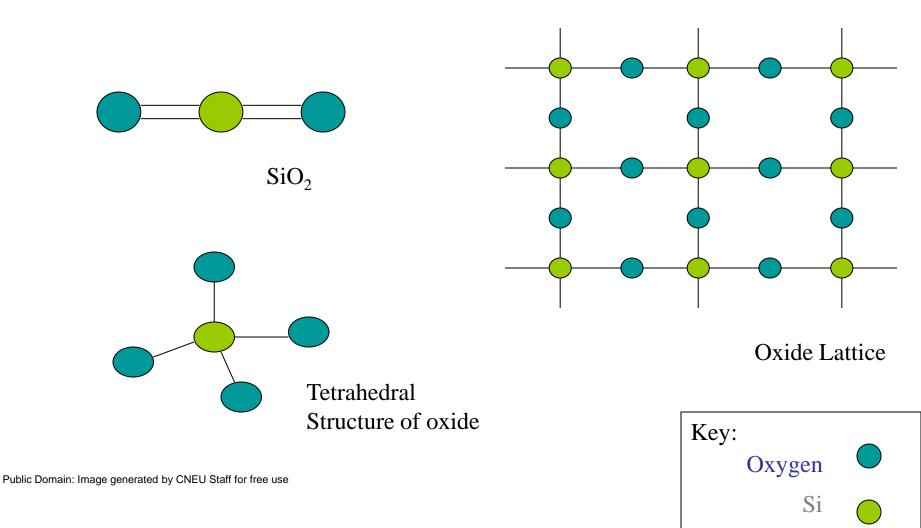


Building College-University Partnerships for Nanotechnology Workforce Development

Dielectrics by Growth and Deposition

Outline

- Introduction Silicon Dioxide
- Types of Oxide
- Furnace Deposition
 - Dry Oxidation
 - Wet Oxidation
- High Pressure Oxidation
- Chemical Vapor Deposition
- Modifying Dielectric Constant


Oxidation

 Oxidation is a chemical reaction in which silicon and oxygen form a stable material called silicon dioxide

Silicon Dioxide

- A high quality, stable electrical insulator material
- Grows naturally on silicon
- Has many uses

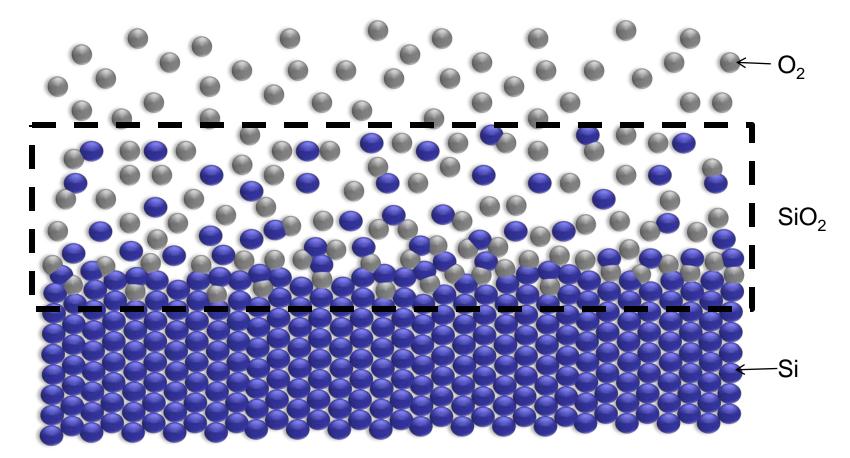
Silicon Dioxide

Oxide Quality

- Determined by checking:
 - Film thickness and uniformity (nm)
 - Defects (#/volume)
 - Dielectric strength (MV/cm²)
 - Stress (MPa)
 - Interface properties

Film Thickness

- Oxide film thickness can be roughly judged by the color of the oxide
- This is a general measurement, but can be useful


Silicon Dioxide Thickness

Thickness	Color	Thickness	Color				
0.05 µm	Tan	0.54	Yellow-green				
0.12	Royal Blue	0.57	Yellow to "yellowish"				
0.17	Metallic to v. light yellow-green	0.60	Carnation Pink				
0.22	Gold w/ orange-yellow	0.63	Violet-red				
0.27	Red-violet	0.80	Orange				
0.32	Blue to Blue-green	0.85	Dull, light Red-violet				
0.36	Yellow-green	0.87	Blue-violet				
0.39	Yellow	0.92	Blue-green				
0.42	Carnation Pink	0.97	Yellow to "yellowish"				
0.50	Blue-green	1.00	Carnation Pink				

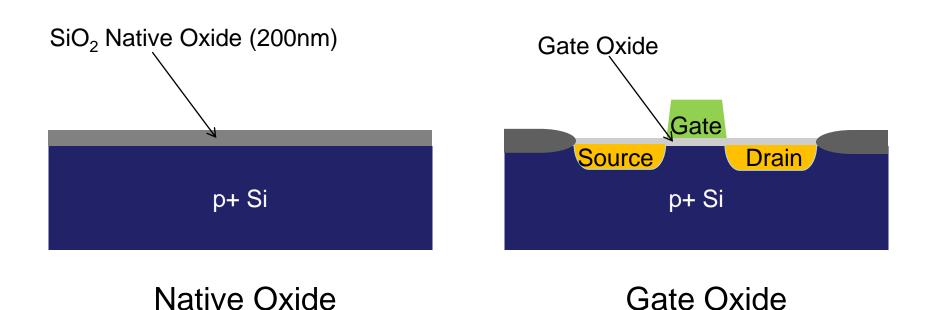
Mechanism

- Oxygen moves through the oxide layer to react with the silicon below
- Oxygen diffuses from an area of high concentration (gas) to an area of low oxygen conc. (silicon)
- Fick's first law states that the particle flow per unit area, J (particle flux), is directly proportional to the concentration gradient of the particle:
 J = -D∂N(x,t)/∂x

Diffusion of Oxygen

Public Domain: Image generated by CNEU Staff for free use

Mechanism


- Silicon in the wafer is consumed as the oxide grows
- Typically, for every 1000Å of oxide grown, 400Å of silicon is consumed
- For a 1000Å layer of oxide, the wafer physically grows only 600Å

Outline

- Introduction Silicon dioxide
- Types of Oxide
- Furnace Deposition
 - Dry Oxidation
 - Wet Oxidation
- High Pressure Oxidation
- Chemical Vapor Deposition
- Modifying Dielectric Constant

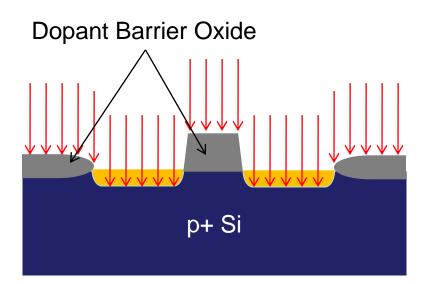

Native Oxide

- Considered a contaminant. It grows naturally on silicon at room temperature due to the presence of O₂ in the ambient environment
- Can reach a maximum thickness of ~40Å
- Gate Oxide
 - A highly pure, specifically grown oxide that acts as a dielectric between the gate, source, and drain on the MOS structure
 - Optimal thickness is between 20Å and several hundred Å
 - Higher purity and thinner oxides lead to the production of faster devices

Public Domain: Image generated by CNEU Staff for free use

- Field Oxide (FOX)
 - Used to isolate individual transistors from each other on a wafer
 - Ideal thickness is between 2,500Å 15,000Å.
- Barrier Oxide
 - Protects active devices and silicon from further processing
 - Ideal thickness is usually several hundred Å

Field Oxide

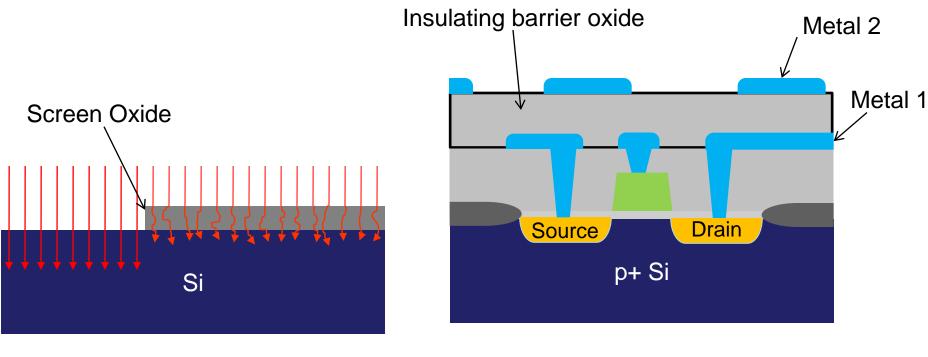

Barrier Oxide

Public Domain: Image generated by CNEU Staff for free use

• Dopant Barrier

- Used as a mask to prevent doping in unwanted areas
- Also used in patterning of wafers. Its chemical resistance provides a strong barrier for etching/depositing/etc. patterns in a wafer
- Optimal thickness ~400Å 1,200Å, but it depends on the doping process
- Pad Oxide
 - Reduces stress for Si₃N₄
 - Thickness is kept very thin

Pad Oxide


Source Drain p+ Si

Dopant Barrier Oxide

Pad Oxide

Public Domain: Image generated by CNEU Staff for free use

- Implant Screen Oxide
 - Used to prevent/minimize implant channeling and damage
 - Thickness varies depending on implant depth
- Insulating Barrier
 - Placed between metal layers to prevent electrical shorts
 - Used because of its insulating properties (does not conduct electricity)
 - This layer is deposited (as opposed to grown) and the required thickness varies

Implant Screen Oxide

Insulating Barrier Oxide

Public Domain: Image generated by CNEU Staff for free use

Outline

- Introduction Silicon dioxide
- Types of Oxide
- Furnace Deposition
 - Dry Oxidation
 - Wet Oxidation
- High Pressure Oxidation
- Chemical Vapor Deposition
- Modifying Dielectric Constant

Oxidation

- Three methods for **growing** oxide:
 - High temperature oxidation (furnace)
 - w/ oxygen: dry oxidation
 - w/ steam: wet oxidation
 - High-pressure oxidation HiPOx
- One method of <u>depositing</u> oxide:
 CVD chemical vapor deposition

Furnace Oxidation

- Important parameters for furnace processes:
 - Time
 - Temperature
 - Temperature gradients
 - Gas composition and purity
 - Gas flow rate
 - Thermal stress management

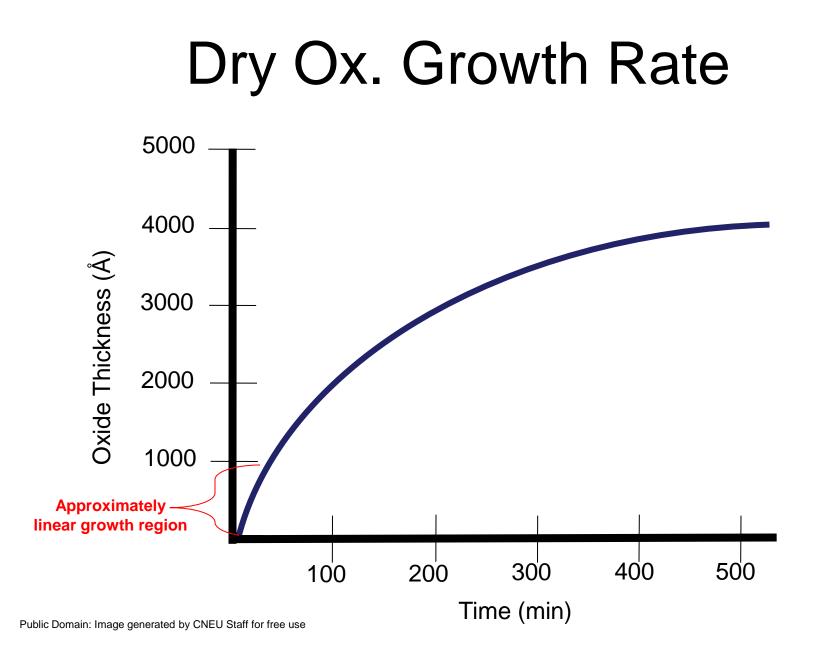
Dry Oxidation

Oxidation that occurs as a result of oxygen reacting with silicon

 $-Si + O_2 \rightarrow SiO_2$

- Grows high quality thin layers of oxide (i.e. gate oxides)
- Grows oxide at a slow rate

Dry Oxidation

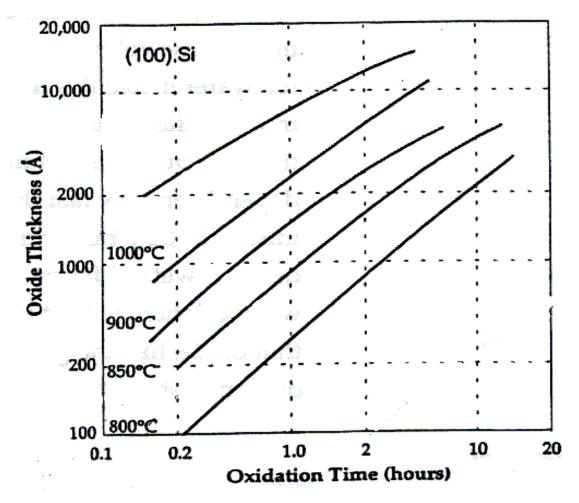

- The process is performed in the furnace at a high temperature (normally above 1000°C)
- Uses oxygen as the process gas
- May use HCI in process to reduce charges at the wafer surface

Dry Ox. Process Recipe

Step	Time	Temp. (°C)	Gas Flow (SLM)		
	(min)		N ₂	O ₂	HCL
1) Idle state		850	3	0	0
2) Push wafer into furnace	5	850	3	0	0
3) Ramp up temp.	15	10°C/min	3	0	0
4) Temp. stabilization	5	1000	3	0	0
5) Dry oxide growth	30	1000	0	2.5	.067
6) Anneal	30	1000	3	0	0
7) Ramp down temp.	75	-2°C/min	3	0	0
8) Retrieve wafer	850	3	0	0	

Ramping

- With any furnace process, temperatures need to be changed slowly when wafers are present
- The ramp-up rate (in this recipe) is 10°C/min.
 The ramp-down rate is -2°C/min.
- These slow rates are necessary to prevent warping or other thermal stress problems in the silicon wafers


Wet Oxidation

- Oxidation that occurs as a result of steam reacting with silicon
 - Si + 2H₂O \Rightarrow SiO₂ + 2H₂
- Uses steam as the process gas
 - Steam is pyrolytic meaning that in high heat H₂ and O₂ are reacted together to create water vapor molecules
 - This produces a much purer steam for oxidation
- Grows oxide at a much faster rate and produces a lower quality oxide
- Use this technique when very thick oxides (i.e. field oxide) are needed rather than high quality

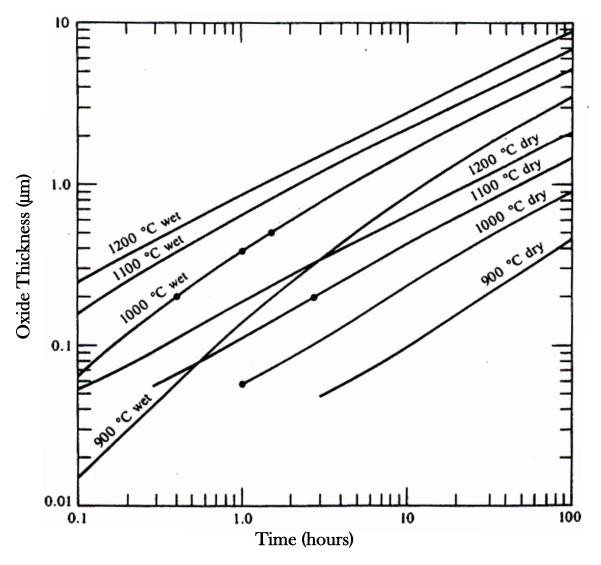
Chlorinated Agents

- Using chlorinated gases in the oxidation process can neutralize charge accumulation at the silicon oxide interface
- Chlorinated agents are kept under 3% so instability is not created in the oxide layer
- Chlorinate agents can increase growth rates by 10-15%. This mechanism is poorly understood
- Trichloroethane (TCA), an organochloride, offers low corrosion to the oxidation system

Wet Ox. Growth Rate

Wet Vs. Dry Oxidation

- Dry Ox. Grows higher quality oxides
 - In Wet Ox., steam reacts with silicon and produces hydrogen molecules. These molecules become trapped in the oxide and change the stoichiometry of the oxide
 - Stoichiometry indicates how closely the deposited film approaches the ratio of the elements given by its chemical formula


Wet Vs. Dry Oxidation

- Wet Ox. grows oxides faster
 - At 1000°C, the solubility of water in silicon (total amount of water that can be present in a certain volume of silicon) is 600 times that of oxygen in silicon
 - Even though oxygen diffuses faster, it has a lower solubility and physically can fit fewer atoms in the silicon

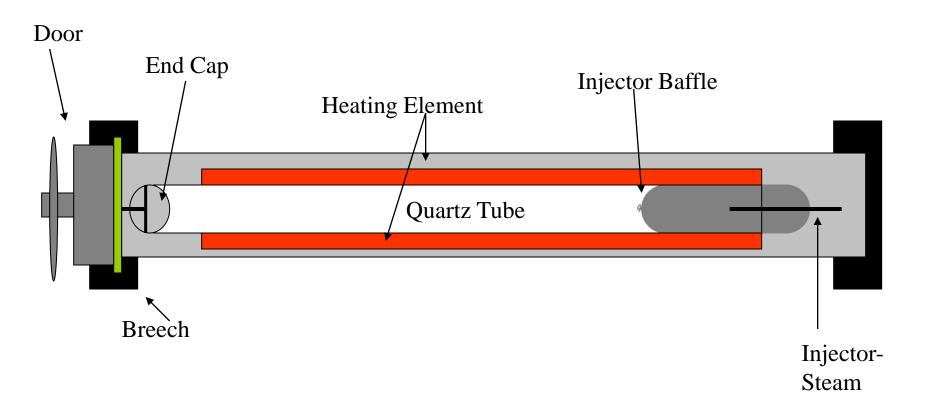
Wet Vs. Dry Oxidation

Oxide Type	Temp (°C)	Thickness (Å)	Time
Dry	1000	1000	2 hours
Wet	1000	1000	12 minutes

Wet and Dry Oxide Growth

Increasing Temp. – Decreasing Time

- There are many problems with increasing the temperature at which a process runs
 - Increased diffusion of impurities present in the wafer
 - Crystal defects (stacking faults)
 - Permanent damage from thermal stress
 - Equipment damage/more costly equipment to run at higher temperatures


Outline

- Introduction Silicon dioxide
- Types of Oxide
- Furnace Deposition
 - Dry Oxidation
 - Wet Oxidation
- High Pressure Oxidation
- Chemical Vapor Deposition
- Modifying Dielectric Constant

High Pressure Oxidation -HiPOx

- Used to grow thick layers of oxide in reduced time and temperature (i.e. field oxide)
- Uses steam and oxygen as process gases
- Has special HiPOx system equipment

HiPOx System

Public Domain: Image generated by CNEU Staff for free use

HiPOx

• Runs at reduced temperatures:

 $- \sim 650^{\circ}\text{C} - 900^{\circ}\text{C}$

• And increased pressures:

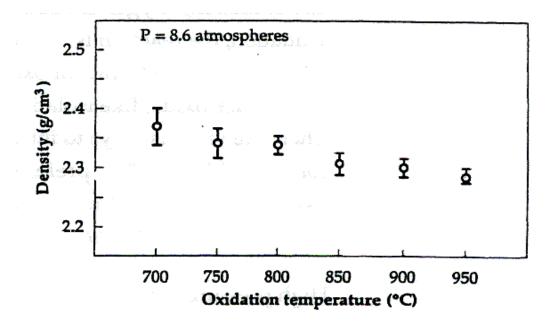
– ~ 5 – 20 atm

HiPOx Relationships

• Time and pressure are inversely related:

Temp. (°C)	Pressure (atm.)	Time
900	1	5 hours
900	5	1 hour
900	25	12 minutes

*Assuming that the wafers are of the same thickness


HiPOx Relationships

- Temperature and Pressure:
 - For every increase of one atmosphere, the temperature can be dropped by 30°C to obtain the same thickness in the same time

Time (hours)	Pressure (atm.)	Temp. (°C)
5	1	1000
5	10	700

HiPOx Relationships

- Temperature and oxide density:
 - As temperature decreases, oxide density increases

Outline

- Introduction Silicon dioxide
- Types of Oxide
- Furnace Deposition
 - Dry Oxidation
 - Wet Oxidation
- High Pressure Oxidation
- Chemical Vapor Deposition
- Modifying Dielectric Constant

CVD

• The deposition of oxide onto a wafer using the decomposition of silane

 $-\operatorname{SiH}_4 + \operatorname{O}_2 \rightarrow \operatorname{SiO}_2 + 2\operatorname{H}_2$

• "Deposits" a layer of oxide as opposed to the other techniques that "grow" the oxide

CVD

- Oxide is deposited at ~ 350°C
- Silicon and oxygen react in plasma and deposit onto the wafer (other techniques diffuse O₂ into the wafer and use the wafer's silicon to produce oxide)
- Creates a nearly stoichiometric layer

CVD

- Nitrous oxide (N₂O) or carbon dioxide (CO₂) are actually preferred over oxygen
- The oxygen reacts too easily in the plasma and can cause poor film quality

Outline

- Introduction Silicon dioxide
- Types of Oxide
- Furnace Deposition
 - Dry Oxidation
 - Wet Oxidation
- High Pressure Oxidation
- Chemical Vapor Deposition
- Modifying Dielectric Constant

 This concept centers around capacitance (C) and its relationship to signal time (T) when fabricating integrated circuits

$$C = \frac{k\epsilon_0 A}{d}$$

- k= dielectric constant
- ε_{o} = permittivity of free space (constant)
- A= area
- d= distance between features

- Signal Time (T)
- R= resistance of metals
- C= capacitance
- In IC fabrication, the idea is to use the correct dielectric material with the right constants for a desired process

T = RC

 Keeps the capacitance the same to insure the signal time is not compromised

- Interconnects- wiring
 - The wire lines must be as close as possible in order to fit the maximum amount of transistors on a chip
 - The distance must be minimized, therefore;
 the dielectric material must have a low k
 - As d decreases, k must also decrease

Low k Dielectric Materials

- FSG, k = 3.4-4.1
- HSQ, k = 2.9
- Nanoporous silica, k = 1.3-2.5
- Fluorinated polyimide, k = 2.6-2.9
- PTFE, k = 1.9
- DVS-BCB, k = 2.65
- Aromatic hydrocarbon, k = 2.65

• Gates

- Uniformity is a key quality parameter
- It is easier to make the gates thicker, to insure that any variation in uniformity won't impact device performance as drastically
- Example 1: If a gate is 30Å:
 - Material uniformity that varies by 10Å drastically alters performance
- Example 2: If a gate is 100Å
 - Material uniformity that varies by 10Å does not impact performance that drastically

- Gates
 - A thicker gate requires a dielectric material with a high k value
 - As d increases, k must also increase

High k Dielectric Materials

- Ta_2O_5 , k = 22-30
- TiO₂, k = 20-85
- Nb₂O₅, k = 11
- HfO₂, k = 17
- Y_2O_3 , k = 15