Preparation of a novel nanocomposite of polyaniline core decorated with anatase-TiO₂ nanoparticles in ionic liquid/water microemulsion

Yanni Guo^{1,2}, Deliang He^{1,*}, Sanbao Xia¹, Xie Xin¹, Xiang Gao¹, Ronghua Yang¹

¹ College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China ² Petrochemical Engineering, Hunan Petrochemical Vocational Technology College, Yueyang, 414012, China

Polyaniline core decorated with TiO₂ (PANI-TiO₂) nanocomposite particles were successfully synthesized in ionic liquid/water (IL/water) microemulsion in the presence of anatase TiO₂ nanoparticles. The TiO₂ nanoparticles had been dispersed beforehand in OP-10 and n-butanol to weaken the strong particles agglomeration of TiO₂. The PANI-TiO₂ nanocomposites were characterized by fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscope (TEM), and their electrochemical behaviors were estimated by the electrochemical workstation. SEM micrographs showed that the nanocomposites exhibited spherical morphology with particle sizes about 70 nm. The TEM result showed that the PANI-TiO₂ nanocomposites had a novel structure that nanocrytalline TiO₂ deposited onto the surface of PANI, which was different from the reported structure of TiO₂-PANI nanocomposites. Both FTIR and UV-Vis spectra indicate that polyaniline and nano-TiO₂ particles are not simply blended or mixed up. A possible reaction mechanism for this nanocomposites; microemulsion; ionic liquid

^{*} Corresponding author: Tel: 86-731-88821870, Fax: 86-731-88824525, E-mail address: delianghe@163.com

1 Introduction

Organic-inorganic nanocomposites for synergetic behavior and a wide range of potential use have caused great interest and concern of therelated academic organizations and researchers over the past decade [1-4]. Especially, core-shell structures nanocomposites of organic conjugated polymers and inorganic nano-crystals have attracted great attention due to a wide number of potential applications such as photonics, photoelectronics, and catalysis [5]. Among the conducting polymers, conducting polyaniline (PANI) is often used as an organic part to prepare nanocomposites because of its low cost, easy preparation, controllable unique properties by oxidation and protonation state, excellent environmental stability and potential application in electronic devices [6]. A number of different metal oxide particles have so far been encapsulated into the shell of polyaniline giving rise to a host of nanocomposites. Deng etc. [7] reported an Ag-PANI core-shell structure via one-pot redox reaction in ethanol at 250 °C. The obtained Ag-PANI core-shell particles with a large Ag core of the size of about 200 nm and relative thin polyaniline shell of the thickness of about 50 nm. Lei [8] successfully prepared Au-polyaniline nanocomposites with core-shell structure on ITO conducting electrode based on 4-aminothiolphenol capped Au nanoparticles via electrochemical synthesis, and the Au nanoparticle with a mean diameter of ca. 250 nm is the core of the nanocomposite and the polyaniline as the shell wrap of the Au nanoparticle. The CeO₂-polyaniline (CeO₂-PANI) core-shell nanocomposites via chemical oxidation of aniline by CeO₂ were reported by Chuang [9]. Jing etc. [10] successfully synthesized Ag-polyaniline core-shell nanocomposites via in-situ chemical oxidation polymerization of aniline based on mercaptocarboxylic acid capped Ag nanoparticles colloid. Yu etc. [11] prepared carbon nanotube-polyaniline core-shell nanowires by in situ inverse microemulsion. Nanocomposites "egg like" cores and shell ranging in diameter from 40 to 80 nm and 60 to 120 nm respectively, have been prepared successfully using hexadecyl trimethyl ammoniumbromide (CTAB) microemulsion by Asim etc. [12]. Nanosized titania because of its unique physicochemical properties [13-16], frequently combined with polyaniline. Zhang [17] synthesized PANI-TiO₂ composite microspheres with an average diameter 2.5-3.5 µm by a template-free method in the presence of salicylic acid as dopant. The PANI-TiO₂ composites are typical core-shell structure, PANI-coated crystalline TiO₂. A polyaniline-nano TiO₂ composite [18] was prepared by polyaniline for the surface modification of nano TiO₂ particles, forming a core-shell structure.

There are many researches on the metal oxide core-polyaniline shell structures, but the structures of polyaniline core decorated with metal oxide are seldom investigated. As is known, the octahedrite type TiO_2 has better chemical properties and photon characteristics, due to its good absorbability and lower electron/holes recombining rate [19], the ultraviolet excitation (wavelength < 380 nm) can overcome the energy gap of pristine titanium dioxide for photocatalysts for electrons to jump to conduction band to form the electrons-holes pair. The formed holes and electrons can oxidize and reduce the H₂O, OH or O₂ adsorbed on the surface of TiO₂ to living free radicals, which can deteriorate the organic materials or undesired pollutants that adsorbed on the surface of TiO₂ catalyst resulting in generating non-poisonous CO_2 , H₂O and some inorganic products. Whereas, for TiO₂ core-PANI shell composites, because of package action of polyaniline, photon absorption of TiO₂ nanoparticles is blocked and the living free radicals generated from holes and electrons are hard to transfer onto the surface of polyaniline to oxidize organic materials, moreover, the living free radicals may react to the polyaniline in course of transfer. Thus, in fact, the photoelectric capabilities of TiO₂ are bated after being enwrapped by polyaniline. Hereby, polyaniline core decorated with TiO₂ (PANI-TiO₂) nanocomposite particles make it possible to develop the properties of TiO₂.

Ionic liquids (ILs) are organic salts with low melting points [20], and have a stable liquid range temperature of over 300°C. Typical ILs have unusual properties including nonvolatility, nonflammability, wide electrochemical windows, higher ionic conductivity, excellent thermal and chemical stability. More recently, synthesis of PANI has been advocated by electrochemical [21] and interfacial [22] polymerization in ILs. All of the PANI exhibit excellent physical and chemical properties. Another potential advantage of synthesis in ILs is their unique solvent capabilities, which can avoid organic solvent volatilizing.

Microemulsions are thermodynamically stable dispersions of two or more immiscible liquids that are stabilized by an adsorbed surfactant film at the liquid-liquid interface. They are an effective method to prepare nanoparticles, nanowires and nanorods [23]. Furthermore, it has been demonstrated that ILs could substitute water or conventional organic solvents to form novel microemulsion systems in the presence of surfactant, and these novel microemulsions incorporate the advantages of ILs and microemulsion [24-26]. Our research group has successfully prepared PANI nanoparticles in IL/water emulsion systems [27,28].

In the present study, a polyaniline core decorated with TiO_2 (PANI- TiO_2) nanocomposite was prepared in a microemulsion comprised of de-ionized water as the continuous aqueous phase and an oil solution including aniline and hydrophobic IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF₆) as the dispersed phase in the presence of anatase TiO_2 nanoparticles. The TiO_2 nanoparticles were dispersed beforehand in OP-10 and n-butanol. The nanocomposites were characterized by fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscope (TEM). Moreover, the possible reaction mechanism for the preparation of PANT- TiO_2 nanocomposite is investigated here.

2 Experimental

2.1 Materials

IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF₆) was prepared as described in the literature [29]. Nanocrystalline TiO₂ (anatase, <10 nm) was synthesized based on a sol-gel technique as described in the previous procedure [30]. Aniline, *n*-butanol, ammonium persulfate (APS), nitric acid and other chemicals were analytical grade (Sinopharm Chemical Reagent Co.,Ltd) and were used as received. The emulsifier nonyphenol ethoxylates (OP-10) was obtained from 3W Industry Co., Ltd. All aqueous solutions were prepared with de-ionized water.

2.2 Synthesis of polyaniline core decorated with TiO_2 (PANI-TiO₂) nanocomposite

The polyaniline core decorated with TiO₂ (PANI-TiO₂) composites were synthesized in microemulsion system via in-situ chemical oxidative polymerization in the presence of TiO₂ nanoparticles, and the procedure was as follows: Firstly, hydrophobic IL [bmim]PF₆ (2 mL)/aniline (1 mL) mixture was added into the OP-10 (13 mL)/n-butanol (3 mL)/HNO₃ (87 mL (0.115 mol·L⁻¹)) solution, after the mixture was stirred for 1 h under magnetic stirring, a dispersion of TiO₂ nanoparticles (TiO₂:aniline = 25 wt%) in a mixed solution of 3 mL OP-10 and 2 mL n-butanol was in one time introduced into the mixture, after another 1 h magnetic stirring a transparent oil-in-water microemulsion was obtained. Then, the polymerization was initiated by adding 6 mL of 3 molL⁻¹ APS aqueous solution into the above microemulsion droplet within 30 min under magnetic stirring. The polymerization was allowed to proceed for 4 h under stirring. Finally, the obtained sap-green polyaniline core decorated with TiO₂ (PANI-TiO₂) nanocomposite powder was filtrated and rinsed with acetone and water repeatedly, and then dried in vacuum at 55°C for 24 h. For comparison, polyaniline nanoparticles were also prepared under the same condition, but without TiO₂ nanoparticles added.

All the experimental procedures proceeded at room temperature except the drying of samples.

2.3 Characterization

The morphology of nanocomposites was examined by a JSM-6700F scanning electron microscope (SEM) and a JEM-3010 high-resolution transmission electron microscope (TEM). Fourier transform infrared (FT-IR) spectra were recorded on a Perkin Elmer Fourier transform infrared spectrometer. The ultraviolet visible (UV–vis) absorption spectra were recorded on a LabTech UV-240 spectrophotometer. Cyclic voltammetric studies of PANI and nanocomposites were performed by using an IVIUMSTAT electrochemical working station (IVIUM Technologies BV). A one-compartment cell was used with a platinum mesh as counter electrode and a saturated calomel electrode (SCE) as reference electrode. The electrolyte was composed of 1 mM·L⁻¹ K₃Fe(CN)₆, 1 mM·L⁻¹ K₄Fe(CN)₆ and 0.2 mol·L⁻¹ NaCl. The scan speed was 0.1 V·s⁻¹ and the potential range was from -200 mV to 600 mV. A certain volume of PANI or nanocomposite ethanol solution was added dropwise by an injector to the surface of graphite disk (0.7 cm²). After dried in air at room temperature, the PANI/graphite or nanocomposite/graphite electrode was used as the working electrode

3 Results and discussion

3.1 A possible reaction mechanism for PANI-TiO₂ nanocomposite

Fig. 1 shows a supposed model describing a polyaniline core decorated with TiO_2 (PANI-TiO₂) nanocomposite formation via microemulsion polymerization. There are plenty of surface hydroxyl groups on the surface of TiO_2 nanoparticles, which are produced from the adsorbed water molecules on the surface of

TiO₂ nanoparticles. The hydrogen bonding interactions between the surface hydroxyl groups and the ether groups in OP-10 or the hydroxyl groups in n-butanol make it possible to weaken the strong particles agglomeration of TiO₂, and thus to form a dispersion of TiO₂ nanoparticles. when the above dispersion is added into the (IL+An)/water microemulsion, under the traction of lipophilic groups of OP-10 and n-butanol, the dispersed TiO₂ nanoparticles absorb onto the surface of the microemilsion micelles to form core-shell type nano-micelles. Afterwards, the polymerization is initiated by APS, during that some chemical bonds generate between TiO₂ and polyaniline chain which are stronger than the hydrogen bonds between the surface of TiO₂ and hydrophilic groups of OP-10 or n-butanol. After the polymerization ends, OP-10, n-butanol and IL can be washed down, finally the polyaniline core decorated with TiO₂ nanocomposite are prepared.

Fig. 1 The forming mechanism of PANI-TiO₂ nanocomposite

3.2 FTIR and UV-vis spectra of PANI-TiO₂ nanocomposites

The FTIR spectra of anatase-TiO₂ nanoparticles, PANI, and PANI-TiO₂ nanocomposite are shown in Fig. 2, respectively. From Fig. 2(a), the broad peak from 400-700 cm⁻¹ is the characteristic band of TiO₂. The characteristic bands of PANI (Fig. 2(b)) are assigned as follows: the band at 3413 cm⁻¹ is attributable to N–H stretching mode, C=N and C=C stretching mode for the quinoid and benzenoid rings occur at 1585 cm⁻¹ and 1504 cm⁻¹, the bands at about 1288 cm⁻¹ and 1244 cm⁻¹ have been attributed to C–N stretching mode for the benzenoid ring, while the band at 1101 cm⁻¹ is assigned to a in-plane bending vibration of C–H (mode of N=Q=N, Q=N⁺H=B and B–N⁺H–B), which is formed during protonation [31]. It is evident that the FTIR spectrum of the PANI-TiO₂ composite shown in Fig. 2(c) contains contributions from both anatase TiO₂ and PANI. However, some bands of PANI have shifted due to interactions with anatase-TiO₂ nanoparticles. For example, the bands at 1585 cm⁻¹, 1504 cm⁻¹ and 1288 cm⁻¹, corresponding to the stretching mode of C=N, C=C and C–N, all shift to lower wavenumbers, and N–H stretching band at 3413 cm⁻¹ shifts to higher wavenumber. Similarly, the band at 1101 cm⁻¹ also shifts to 1120 cm⁻¹. These changes suggest that C=N, C=C and C–N bands become weaker in PANI-TiO₂ nanocomposite, while the N–H band become stronger. This is probably because of the action of hydrogen bonding between the surfaces of anatase TiO₂ nanoparticles and the N–H groups in PANI macromolecules. The results confirm that there is strong interaction between the PANI and nanocrystalline TiO₂, as well as the presence of anatase TiO₂ nanoparticles prompts the doping of PANI.

Fig. 2 FTIR spectra of (a) TiO₂, (b) PANI and (c) PANI-TiO₂

The UV-vis absorption spectra of anatase TiO₂, PANI and the PANI-TiO₂ composite are shown in Fig. 3. Clearly, the resulted PANI-TiO₂ composite can strongly absorb not only the near ultraviolet light but also the visible light, whereas the TiO_2 can absorb light with wavelengths below 250 nm only. As shown in Fig. 3, we can clearly observe the characteristic bands of polyaniline at 366-373 nm and 535 nm, which are attributed to π - π^* transition of benzenoid ring, polaron- π^* , respectively [32]. Specially, the absorption peaks of the PANI-TiO₂ nanocomposite at characteristic peaks of PANI become stronger, moreover the characteristic absorption peak at 535 nm become unconspicuous because of being covered by a new absorption peak at 680nm in visible region. This result further proves that it is not a simple mixing action between the PANI and nanocrystalline TiO_2 , and the resulted PANI-TiO₂ nanocomposite could have a potential use as photocatalysis material.

Fig. 3 UV-vis spectra of (a) TiO₂, (b) PANI and (c) PANI-TiO₂

3.3 electrochemical characteristics of PANI-TiO₂ nanocomposite

The electrochemical characteristics of different samples were also investigated in relevant electrolyte. Cyclic voltammograms (CV) of PANI and PANI-TiO₂ nanocomposite are shown in Fig. 4 The reversible CV curves are observed obviously, which is related to the electrochemical probe of $Fe(CN)_6^{4-}/Fe(CN)_6^{3-}$. Although both shapes seem to be similar to each other, the oxidation and reduction peak current density (3.13 mA·cm⁻², -3.45 mA·cm⁻²) of the PANI-TiO₂ nanocomposite are higher than those of the PANI (2.30 mA·cm⁻², -2.70 mA·cm⁻²). The better electrochemical catalytic activity of the PANI-TiO₂ nanocomposite should be attributed to its special structure. When TiO₂ nanoparticles are mixed into the RTIL/water microemulsion under stirring, they assemble at the RTIL/water interface. Morever, nano TiO₂ exhibit electropositive in the acidic medium.

They can attract a lot of anions, namely nitrate ions, to assemble at the interface of the micromulsion. The anions are doped into the PANI chains as counterions when the polymerization is processed. Thus, the doping degree of the PANI-TiO₂ nanocomposite is improved, and a better electrochemical activity is exhibited.

Fig. 4 Cyclic voltammograms of different samples at a potential scan rate of 50 mV·s⁻¹.

(a) PANI, (b) PANI-TiO₂

3.4 Morphology of PANI-TiO₂ nanocomposite

The morphology and particle sizes of PANI and PANI-TiO₂ nanocomposite were determined by SEM and shown in Fig. 5. It can be found from Fig. 5(a) that the PANI exhibit spherical morphology with particle sizes about 50 nm, while after combined with TiO₂ the morphology of PANI-TiO₂ nanoparticles approaches spherical about 70 nm (Fig. 5(b)). It implies that TiO₂ nanoparticles enwrap the polyaniline.

Fig. 5 SEM images of (a) PANI and (b) PANI-TiO₂

Fig. 6 shows the typical TEM images of PANI and PANI-TiO₂ nanocomposite. It can be found that the polyaniline is amorphous in Fig. 6(a), which has great difference from Fig. 6(b). Fig. 6(b) gives the TEM image of the polyaniline core decorated with anatase TiO₂ shell nanocomposite. One can find that the polyaniline with a mean diameter of about 50 nm is the core of the nanocomposite and the TiO₂ nanoparticles deposit onto the surface of the polyaniline, which is different from the reported structure of TiO₂-PANI nanoparticles that polyaniline wrap of TiO₂. The diffraction pattern from the edge of particles of PANI-TiO₂ composite in Fig. 6(b) suggests that the TiO₂ nanoparticles deposited on the surface of polyaniline are typical anatase phase, and this agrees well with the X-ray diffraction result of the separate TiO₂ nanoparticle sample.

Fig. 6 TEM images of (a) PANI and (b) PANI-TiO₂ (The insets are the selected area electron diffraction patterns and the X-ray diffraction pattern of TiO₂)

4 Conclusion

Polyaniline core decorated with TiO_2 (PANI- TiO_2) nancomposite have been successfully prepared in IL/water microemulsion in the presence of nanocrytalline TiO_2 particles. TiO_2 nanoparticles dispersed on the (IL+An)/water interface could deposit uniformly onto the surface of PANI. It is confirmed that the diameter of the resulted PANI- TiO_2 nanoparticles are about 70 nm, and the interactions between two components are strong. FTIR and UV-Vis spectra indicate that polyaniline and nano- TiO_2 particles are not simply blended or mixed up, while the strong interactions which exist at the interface of polyaniline macromolecules and nano- TiO_2 particles need further investigations in the future. CV curves show that the PANI- TiO_2 nanocomposite has better electrochemical catalytic activity than PANI.

Therefore, it can be expected that $PANI-TiO_2$ nanocomposite should be useful in photocatalysis, electrical and electrochemical fields. Further more, this method is simple and environmentally friendly, and has a great potential for the commercialization of the technology.

Acknowledgments

This work is financially supported by Hunan Provincial Natural Science Foundation of China (No 11JJ3015, 11JJ1009).

References

- [1] SHI Li, WANG Xin, LU Lu-de, YANG Xu-jie, Wu Xiao-dong. Preparation of TiO2/polyaniline nanocomposite from a lyotropic liquid crystalline solution [J]. Synthetic Metals, 2009,159 (23): 2525-2529.
- [2] LIU Jin-song, KADNIKOVA E N, LIU Yu-xiang, MCGEHEE M D, FRECHET J M J. Polythiophene Containing Thermally Removable Solubilizing Groups Enhances the Interface and the Performance of Polymer–Titania Hybrid Solar Cells [J]. Journal of the American Chemical Society, 2004,126 (31): 9486-9487.
- [3] SAKAI N, PRASAD G K, EBINA Y, TAKADA K, SASAKI T, Layer-by-Layer Assembled TiO₂ Nanoparticle/PEDOT-PSS Composite Films for Switching of Electric Conductivity in Response to Ultraviolet and Visible Light[J]. Chemistry of Materials, 2006, 18 (16): 3596-3598.
- [4] CHOWDHURY D, PAUL A, CHATTOPADHYAY A, Photocatalytic Polypyrrole–TiO₂–Nanoparticles Composite Thin Film Generated at the Air–Water Interface [J]. Langmuir, 2005, 21 (9): 4123-4128.
- [5] SUN Shou-heng, MURRAY C B, WELLER D, FOLKS L, MOSER A, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J]. Science, 2000, 287:1989-1992.
- [6] HUANG Jia-xing, VIRJI S, WEILLER B H, KANER R B, Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors [J]. Journal of the American Chemical Society, 2003, 125 (2): 314–315.
- [7] DU Ji-min, LIU Zhi-min, HAN Bu-xing, LI Zhong-hao, ZHANG Jian-ling, HUANG Ying, One-pot synthesis of the macroporous polyaniline microspheres and Ag/polyaniline core-shell particles[J].

Microporous and Mesoporous Materials, 2005, 84 (2):254-260.

- [8] LEI Ting, Preparation of novel core-shell nanoparticles by electrochemical synthesis[J]. Transactions of Nonferrous Metals Society of China, 2007, 17 (6): 1343-1346.
- [9] CHUANG Feng-Yi, YANG Sze-Ming, Cerium dioxide/polyaniline core-shell nanocomposites[J]. Journal of Colloid and Interface Science, 2008, 320 (1):194-201.
- [10] JING Sheng-yu, XING Shuang-xi, YU Lian-xiang, WU Yan, ZHAO Chun. Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid[J]. Materials Letters, 2007, 61 (13):2794-2797.
- [11] YU Yi-jun, CHE Bo, SI Zhi-hua, LI Liang, CHEN Wei, XUE Gi. Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion[J]. Synthetic Metals, 2005, 150 (3):271-277.
- [12] ASIM N, RADIMAN S, YARMO M A, Preparation and characterization of core–shell polyaniline/V₂O₅ nanocomposite via microemulsion method[J]. Materials Letters, 62 (6):1044-1047.
- [13] ZHENG Yan-qing, SHI Er-wei, Chen Zhi-zhan, Li Wen-jun, Hu Xing-fang. Influence of solution concentration on the hydrothermal preparation of titania crystallites [J]. Journal of Materials Chemistry, 2001, 11:1547–1551.
- [14] FERRONI M, GUIDI V, MARTINELLI G, FAGLIA G, NELLI P, SBERVEGLIERI G. Characterization of a nanosized TiO₂ gas sensor[J]. Nanostructured Materials, 1996, 7 (7):709-718.
- [15] BLAKE D M, WEBB J, TURCHI C, MAGRINI K. Kinetic and mechanistic overview of TiO₂-photocatalyzed oxidation reactions in aqueous solution[J]. Solar Energy Mater, 1991,24, (1): 584-593
- [16] KARCH J, BIRRIGER R, GLEITER H. Ceramics ductile at low temperature[J]. Nature, 1987, 330: 556-558.
- [17] ZHANG Li-juan, WAN Mei-xiang, WEI Yen. Polyaniline/TiO₂ microspheres prepared by a template-free method[J]. Synthetic Metals, 2005, 151 (1):1-5.
- [18] Li Xing-wei, Wang Geng-chao, Li Xiao-xuan, Lu Dong-ming. Surface properties of polyaniline/nano-TiO₂ composites[J]. Applied Surface Science, 2004, 229 (1):395-401.
- [19] XIA Bin, HUANG Hui-zhong, XIE You-chang. Heat treatment on TiO₂ nanoparticles prepared by vapor-phase hydrolysis[J]. Materials Science and Engineering: B, 1999, 57 (2):150-154.
- [20] SEDDON K R, STARK A, TORRES M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids [J]. Pure and Applied Chemistry, 2000, 72 (12): 2275-2287.
- [21] INNIS P C, MAZURKIEWICZ J, NGUYEN T, WALLACE G G, MACFARLANE D. Enhanced electrochemical stability of polyaniline in ionic liquids[J]. Current Applied Physics, 2004, 4 (2): 389-393.
- [22] GAO Hai-xiang, JIANG Tao, HAN Bu-xing, WANG Yong, DU Ji-min, LIU Zhi-min, ZHANG Jian-ling. Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles[J]. Polymer, 2004, 45 (9): 3017-3019.
- [23] XING Yan, LI Mei, DAVIS S A, MANN S. Synthesis and Characterization of Cerium Phosphate Nanowires in Microemulsion Reaction Media[J]. Journal of Physical Chemistry B, 2006, 110 (3): 1111–1113.
- [24] GAO Ya-nan, HAN Shuai-bing, HAN Bu-xing, LI Gan-zuo, SHEN Dong, LI Zhong-hao, DU Ji-min, HOU Wan-guo, ZHANG Gao-yong. TX-100/Water/1-Butyl-3-methylimidazolium Hexafluorophosphate Microemulsions[J]. Langmuir 2005, 21(13): 5681-5684.
- [25] LI Na, GAO Yan-an, ZHENG Li-qiang, ZHANG Jin, Yu Li, LI Xin-wei. Studies on the Micropolarities of bmim BF₄/TX-100/Toluene Ionic Liquid Microemulsions and Their Behaviors Characterized by UV–Visible Spectroscopy[J]. Langmuir, 2007, 23 (3):1091-1097.
- [26] FU Chao-peng, ZHOU Hai-hui, PENG Wen-cai, CHEN Jin-hua, KUANG Ya-fei. Comparison of electrodeposition of silver in ionic liquid microemulsions[J]. Electrochemistry Communications, 2008, 10 (5):806-809.
- [27] ZHOU Zhou, HE De-liang, LI Xue-ling, LI Xin-tao, ZHANG Li-mei, LI Guo-xi. The micro-emulsion synihesis of polyaniline in ionic liquid /water system[J]. Acta Polymerica Sinica, 2007 (8): 757-760. (in chinese)
- [28] ZHOU Zhou, HE De-liang, LI Xue-ling, WANG Shi-qing, LI Guo-xi. Preparation and properties of polyaniline codoped with ionic liquid and dodecyl benzene sulfonic acid or hydrochloric acid[J]. Polymer Science, Series B. 2008, 50 (7): 209-214.

- [29] ZHONG Jian-fang, HE De-liang, ZHOU Zhou, XU Yi-bin. Electrochemical oxidation behavior of hydroxypivalaldehyde in the ionic liquids, Chinese [J]. Chinese Chemical Letters, 2008, 19 (3): 319-323.
- [30] ZHOU Yong, ANTONIETTI M. Synthesis of Very Small TiO₂ Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates [J]. Journal of the American Chemical Society, 2003, 125 (49):14960-14961.
- [31] KANG E T, NEHO K G, TAN K L, Polyaniline: A polymer with many interesting intrinsic redox states [J]. Progress in Polymer Science, 1998, 23(2): 277-324.
- [32] XIA You-nan, WIESINGER J M, MACDIARMID A G, EPSTEIN A J, Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method [J]. Chemistry of Materials, 1995, 7 (3): 443-445.